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ABSTRACT

Bayesian methods are a mainstay in the sciences, especially in high energy physics and
astrophysics but many still see these methods as an arcane, challenging, and overly
technical. Bayesian analysis is especially perceived as inappropriate for undergraduate
teaching to the point where there are essentially no undergraduate Bayesian
textbooks. In this presentation | am going to challenge these notions and provide
concrete techniques for doing Bayesian inference that | have used with students for
both within the classroom and for research. | will also provide the rationale for why
everyone should be using Bayesian techniques, both practically and philosophically.




INTRODUCTION

| am not a data scientist

» | am a scientist - computational neuroscience, paleoclimate, epidemiology
(zombies!), chemical kinetics, anything that interests me

» Messages in this presentation
* Positive message —
« Bayesian methods give you a uniform approach to all problems
» Bayesian methods are easy to interpret
» Bayesian methods get you to think more deeply
* Negative message —

 Standard tools fail

» My teaching and research goal — make technical topics approachable




THERE IS STILL RESISTANCE TO BAYESIAN METHODS
ESPECIALLY IN THE CLASSROOM

e Reasons

» “Subjective” priors vs “Objective” frequencies

e Math is hard

* Inertia (we've always done things this way...)
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WHAT ARE BAYESIAN METHODS?

» Application of probability theory as an extension of logic

» "Probability theory is nothing but common sense reduced to calculation.” - Laplace

» Bayes’ Rule, Bayes Theorem, etc... is just an algebraic step from the multiplication
rule of probability




RULES OF PROBABILITY
* p(A) =0 certain that A is false

« p(A) =1 certain that A is true
. Limited Sum Rule p(4) +p(4) =1

» Full Sum Rule ("or”) p(A+B) = p(A)+ p(B)— p(AB)

* Product Rule ("and”) p(AB) = p(A|B)p(B

likelihood prior

=
- Bayes Rule p(A|B) = PSP,
posterior —_—

normalization




PLAUSIBILITY AND AXIOMS

E. T. JAYNES, 2003

* (I) Degrees of plausibik Seranr e antartE o Al Sl

Amazmgly, these few axioms are enough
to specity a completely consistent,
mathematical framework for

T oMEonsistahl e plausibilities...

 (llla) If a conclusion ca

* (l) Qualitative corresp

* (a) direction of value

ust lead to the same
result.

..and this mathematical framework is
* (lllb) The robot always| - exactly the same as the rules developed
ignore some of the inf
by Laplace for probabilities

* (lllc) The robot always representsEgUIVarE X ITOWTEOgE DY cgUIVaTenTt DTausIe assignments. That is,

It does not arbitrarily
ot is non-ideological

if in two problems the robot’s state of knowledge is the same (except perhaps for the labeling of the

propositions), then it must assign the same plausibilities in both




FORMS OF BAYES

This isnt just a method to do quantitative
analysis, it is a general way to structure

rational thought. In other words, to not think
this way will violate one of Jaynes' axioms...
and one will, by definition, be irrational.

evidence old knowledge

p(datalmodel) - p(model)

| —
p(model|data) Wolatn)

alternatives

updated knowledge




COMPARISON WITH ORTHODOX STATISTICS
AKA FREQUENTIST STATISTICS

Frequentist aka Orthodox Statistics aka Bayesian aka
Standard Methods Probability Theory as Logic
P(A) = long-run relative frequency of occurrence of Ain a P(A) = real-number value of the plausibility of A with
sequence of "identical” repetitions incomplete information

Testing a hypothesis, e.g. true (or population) mean pu=0, Testing a hypothesis, e.g. true (or population) mean pu=0,
from a sample, e.g. X1, X2, X3, ..., One imagines many from a sample, e.g. x1, X2, X3, ..., one looks at the
repetitions of the sample and compares the sample mean probability of that hypothesis given the data,
in these repetitions to the hypothesis. Plilxy 56 %)




GALILEAN PROBLEMS

» What Galileo did with his telescope was to take something
that was invisible and magnity it so that one can easily see the
truth. He used it to compare different approaches to
explaining the cosmos.

* A Galilean problem is one which is small enough that ones
intuition is enough to determine its truth or falsity.




EASY PROBLEMS
TRUE VALUE WITH KNOWN NOISE

e Data: {x;} = {12,14,16},06 =1

* Question: Is the true (population) value , y, less than 137




STANDARD (NON-BAYESIAN) SETUP

Z-TEST

* Choose a statistic (i.e. some function of the data) with certain properties you'd like
(sufficiency, unbiased, etc...)

* In this case we use the sample mean, x

» The sample mean has a distribution (in the long run, or over a large population) that is
Normal with mean of the true value, i, and standard deviation 0/\/N.

* In the distribution of the (imagined) population, where does our hypothesis fall?

* Distribution always over data where the hypothesis (i.e. parameter) is always constant




STANDARD (NON-BAYESIAN) COMPUTATION

Z-TEST
. Data: {x} = {12,14,16},6 = 1

e True value (1) less than 137 14 — 13
= — ey
1/4/3

X 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-1.2 11507 11314 11123 10935  .10749  .10565 10383 10204 10027 09853
-1.3 09680  .09510  .09342 09176  .09012 08851 08692 08534 .08379 .08226
-1.4 08076  .07927 07780 07636  .07493  .07353 07215 07078  .06944 06811
-1.5 06681 06552 06426 T 06178 06057 05938 05821 05705 05592
-1.6 05480 05370  .0526 . N5050  .04947 04846 04746 04648 04551
-1.7 04457 04363 .04272 . 04093 04006 03920 03836 .03754 03673
-1.8 03593 03515  .0343\ . 0288 03216 03144 03074 03005 02938
-1.9 02872 02807  .02743 02619  .02559  .02500 .02442 02385  .02330
-2 02275  .02222 02169 02118 02068 02018 01970 .01923 01876  .01831
-2.1 01786  .01743 01700 01659 01618 01578  .01539 .01500 .01463  .01426

-2.2 01390 01355 01321 01287 01255 01222 01191 01160 01130 01101




A STRATEGIC CHOICE FOR TEACHING

» Use the computer for calculations

* For Bayesian calculations — use MCMC

» Otherwise, one can get lost in analysis




STANDARD (NON-BAYESIAN) COMPUTATION

Z-TEST WITH PYTHON
e Data: {x;} = {12,14,16},06 =1

=97.5 __ 15.132
X35> = 14.00075 555

0.6
x=[12,14,16] v
o=1 =
N=1len(x) ; 0.4
dist=Normal(mean=mean(x),std=c/sqrt(N)) =

' 0.2 area = 0.0416

plot_distribution(dist, fill_left=13) Q

0.0

12 13 14 15 16




BAYESIAN SETUP
NORMAL NOISE, ESTIMATE LOCATION PARAMETER

Data: {x;} = {12,14,16},06 =1

. Bayes P(u| {x;},0) ~ H likelihood(x; | i, ) X prior(u)

Likelihood: P(x;|u, 6) ~ Normal(x; — u, o)

- P(x;} |p,0) ~ H Normal(x; — u, o)

Prior: P(u) ~ Uniform(u)

Distribution over parameter not data
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BAYESIAN COMPUTATION
NORMAL NOISE, ESTIMATE LOCATION PARAMETER

1 def lnlike(data,p): A975 __ 15.115
- w=data : H25~ = 13.99417 570
3 return lognormalpdf(x,u, o)

4 0.6

5 data=array([12.0,14,16 S

o s y(l D S 0.4{P(1<13)=0.0415

/ model=MCMCModel(data, Inlike, % Gt

8 u=Uniform(-50,50), '

9 ) 5.0 | | |

® model.run_mcmc(2000, repeat=2) ' 12 13 14 15 16 17
1

1
1

model.plot_distributions() E




EASY PROBLEMS
TRUE VALUE WITH UNKNOWN NOISE

 Basis for the Student-T test

« Data: {x;} = {12,14,16}




STANDARD (NON-BAYESIAN) COMPUTATION

T-TEST
» Basis for the Student-T test
« Data: {x;} = {12,14,16} A
1% = 1400018328
0.3
x=[12,14,16] s
dof=len(x) % 0| area=0.2389
dist=StudentT(mean=mean(x), z
std=std(x)/sqrt(N-1), =
dof=N-1) i< 0.1
(<%
plot_distribution(dist, fill_left=13,x1im=[9,19])
0.0 | | | ' ,
10 12 14 16 18




BAYESIAN SETUP
NORMAL NOISE, ESTIMATE LOCATION AND SCALE PARAMETER

« Data: {x;} = {12,14,16}

. Bayes: P(u,0| {x;}) ~ H likelihood(x; | i, 6) X prior(u, o)

I I I I IIIIIIIIII I IIIIIII
1.0 e

» Likelihood: P(x;|u, o) ~ Normal(x; — u, o) : el
£ u:o: 02:5.0:—__
B B=-2,0%-05—"/

. P({x;} |p,0) ~ H Normal(x; — u, o)

 Prior: P(u,0) ~ Unitorm(u) X Uniform(log(o)) :




BAYESIAN COMPUTATION
NORMAL NOISE, ESTIMATE LOCATION AND SCALE PARAMETER

(9% = 13,9973

= 00 OO0 JOOWULL S WIN M-

i

def lnlike(data,pu,o0):
x=data
return lognormalpdf(x,u,o)

p(u|data)

data=array([12.0,14,16]) 05 : = =

v,
12157
055" = 2.4307%643

mode1l=MCMCModel(data, Inlike, r975
u=Uniform(-50,50),

o=Jeffreys(),
)

model. run_mcmc (2000, repeat=2)

o)

0.0 2.5 5.0 7.5 100 -19% 150 115  J01



BAYESIAN COMPUTATION
NORMAL NOISE, ESTIMATE LOCATION AND SCALE PARAMETER

(9% = 13,9973

0.3
& { e ;g
E:} E
- - =
Q.
S |
1
b 0 5 10 15 20 25
o :
A975 12:137
055° = 2.4307%s7
0.4
<
V
~ 0.3
-
(0]
5.2
; 5
/an = 01 P(0>5)=0.148
0.0

0.0 2.5 5.0 7.5 100 =195 150
g
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20.0



THE LIGHTHOUSE PROBLEM




THE LIGHTHOUSE PROBLEM




EASY PROBLEMS

TRUE VALUE WITH UNKNOWN CAUCHY DISTRIBUTED NOISE

0.7

» Data: {xi} = {12914316} . | | | :CoI:O,Wz()I.B
0.6 041 -
P(x;| . 0) ~ Cauchy(x; — u,7) 0.5 — 2y =0, 7=

_x():_27fy:

Likelihood: 1 y?
. wy \ (x—p)* + 7y

» Prior: P(u,y) ~ Uniform(u) X Uniform(log(y))

HicaUChy(xi — K }’) X P(:ua 7/)
P({x;})

. Bayes: P(u,y|{x;}) =




BAYESIAN COMPUTATION
CAUCHY NOISE, ESTIMATE LOCATION AND SCALE PARAMETER

(9% = 14.0191765

p(u|data)

1 Mdef lnlike(data,u,y):

2 Xx=data

3 return logcauchypdf(x,u,y)

4

5 data=array([12.0,14,16])

b

7/ model=MCMCModel(data, Inlike,

8 u=Uniform(-50,50),

9 y=Jeffreys(), 0.3

10 ) T

11 model.run_mcmc(2000, repeat=2) 35 0.2
s
261

0.0

0.0 2.5 5.0 7.5 1060 12, 150
Y

1 s

20.0




THERE IS NO ORTHODOX/FREQUENTIST SOLUTION

* Here we have a trivial problem, only slightly more complex than the easiest problem
addressed in an introductory Statistics course and none of the tools presented in

undergraduate Statistics are able to address it.

I location (real)

Parameters
v > 0 scale (real)
Support z € (—o0,+00)
PDF 1
T—T 2
Ty [1 + (TO) ]
CDF 1 (a: — ) 1
— arctan + -
s v 2
Quantile zo + 7 tan[m(p — 3)]
Mean undefined
Media o
Mode To
Variance undefined
MAD ol
Skewness undefined
Ex. kurtosis undefined
Entropy log(4m7y)
MGF does not exist
CF exp(xzoit — v|t|)

Fisher information

1
22




THERE IS NO ORTHODOX/FREQUENTIST SOLUTION

» Here we have a trivial problem, only slightly more complex than the easiest problem
addressed in an introductory Statistics course and none of the tools presented in
undergraduate Statistics are able to address it. (Because the sampling distribution is

pathological)

» The Bayesian solution is a straightforward process and can easily be seen as a slight
generalization from the easiest problem.

* This isn't the worst problem with the standard statistical tools!




A WORSE ORTHODOX/FREQUENTIST SOLUTION

« (E T Jaynes) A device will operate without failure for a time, 6, because of a protective

chemical inhibitor injected into it; but at time, 0, the supply of this chemical is
exhausted, and failures then commence, following the exponential failure law. It is not
feasible to observe the depletion of this inhibitor directly; one can observe only the
resulting failures. From data on actual failure times, estimate the time 6 of guaranteed
safe operation by a confidence interval. Here we have a continuous sample space, and

we are to estimate a location parameter, 0, from the sample values {x;} = {12,14,16}.

5 =8 0.0 2.5 5.0 7.5 10.0 12.5 15.0




EASY PROBLEMS

TRUE VALUE EXPONENTIAL DISTRIBUTION
« Data: {x;} = {12,14,16}

0 —x)d 0
o Likelihood: p(x | 8)dx = {eXP( x)dx, x> }
0 x<0

» Prior: P(6) ~ Uniform(6)

Hip(xi — 0) X P(0)
. Bayes: P(0|{x;}) =

P({x;})
3.0 ]
0-8 | | | | | ° ° °
» There can’t be any data points less than the failure time, x; < 6

E A  The true failure time, 6, can’t be greater than any of the data points, x;
X 04 * ' ' *
Q.

0.2

0.0

50 =3 5 0.0 2.5 5.0 7.5 10.0 12.5 15.0




BAYESIAN COMPUTATION
EXPONENTIAL DISTRIBUTION ESTIMATE LOCATION PARAMETER

« Data: {x;} = {12,14,16}

exp(@ —x)dx, x>0

» Likelihood: p(x| 0)dx = {

1
2
3
4
D
b
7/
O

11
12

Y < 0

def lnlike(data,9):
x=data
if np.any(x<86):
return -np.inf

é975._

95+ = 11-757%(1)13592

N

return np.sum(8-x)

p(6|data)
B

data=array([12.0,14,16])

mode1l=MCMCModel(data, Lnlike,
8=Uniform(-50,50),

model. run_mcmc (1000, repeat=3)




BAYESIAN VS FREQUENTIST

681 = 117574435

N

©
B
(O
)
0
Q.

-

Og 9 10 11

0
« Data: {x;} = {12,14,16}

.

13

14

15

Let us compare the confidence intervals obtained from two different
estimators with the Bayesian intervals. The population mean is E (x)=
=0+ 1, and so

(16) 9*(x1...xN)E]—i—I-Z (x; — 1)

is an unbiased estimator of 6. By a well-known theorem, it has variance
o*=N"1, as we are accustomed to find. We must first find the sampling
distribution of 0%; by the method of characteristic functions we find that

it is proportional to y¥ ! exp(—Ny) for y>0, where y=(0*—0+1).
(17) 0* — 0.8529 < 0 < 0* 4 0.8264

or, with the above sample values, the shortest 909, confidence interval is

(18) 12.1471 < 6 < 13.8264.




BAYESIAN VS FREQUENTIST

Let us compare the confidence intervals obtained from two different
(15) p(dx | 0) = {exp (0= x)dx, x> 9}. estimators with the Bayesian intervals. The population mean is E (x)=

0 , X< =0+1, and so
N

() WHAT WENT WRONG?

(16) 9*(x1...xN)EZ%2 (x; — 1)

i=1

Let us try to understand what is happening here. It 1s perfectly true that,
if the distribution (15) 1s indeed identical with the limiting frequencies of

J : ( ) : : .g q. i1s an unbiased estimator of 0. By a well-known theorem, it has variance
various sample values, and if we could repeat all this an indefinitely large 2= N1, as we are accustomed to find. We must first find the sampling
number of times, then use of the confidence interval (17) would lead us, distribution of 60*; by the method of characteristic functions we find that
in the long run, to a correct statement 907 of the time. But 1t would lead § ¢ is proportional to y¥ ! exp(—Ny) for y>0, where y=(0*—0+1).
us to a wrong answer 1009 of the time in the subclass of cases where (17) 0% — 0.8529 < 0 < 0% + 0.8264

0* > x,+0.85; and we know from the sample whether we are in that subclass. : :
' or, with the above sample values, the shortest 909, confidence interval 1s

(18) 12.1471 < 6 < 13.8264.

* Here we have a trivial problem, only slightly more complex than the easiest problem
addressed in an introductory Statistics course and the standard tools give the wrong

answer.

» The Bayesian solution is a straightforward process and can easily be seen as a slight
generalization from the easiest problem.




PAUSE TO REFLECT

» Shown some simple problems where the standard tools either cannot give a correct
answer or give wrong answers

* Also shown that the Bayesian methods are straightforward to write and implement,
and can handle each of these problems with minimal changes

* The Bayesian methods also provide more information — you get the individual
distributions for all parameters along with correlations between parameters with no
extra work




A LITTLE OF MY FRUSTRATION

* If | was using a method to solve problems and was shown:
1.The method | was using broke in some simple cases
2.There is an alternative that is only marginally more complex but....
1....gives reasonable results on all well-posed problems

2....gives the exact same results | get on easy problems

3....I1s easier to interpret

4....generally gives more information than the methods | had been using

| know what | would do, but what would you do?




ANSCOMBE’S QUARTET

Property
Mean of x

: 2
Sample variance of x : s,

Mean of y

: 2
Sample variance of y : S,

Correlation between xand y

Linear regression line

Coefficient of determination of the linear regression :

R2

Value

9

11
7.50
4125

0.816

y = 3.00 + 0.500x

0.67

Accuracy

exact

exact

to 2 decimal places
+0.003

to 3 decimal places

to 2 and 3 decimal places,
respectively

to 2 decimal places

https://en.wikipedia.org/wiki/Anscombe%27s_quartet



https://en.wikipedia.org/wiki/Anscombe%27s_quartet

LINEAR REGRESSION

» Bayes: P(m,b,c|{x;}) ~ likelihood(x;, y,| m, b, 6) X prior(m, b, o)
e Likelihood: P(y;, x;|m, b, 6) ~ Normal(y, — m - x; + b, o)

* Prior: P(m, b, 0c) ~ Unitorm(m, b) X Uniform(log(o))

lleTy S G719 7975 5.369
m5<> = 0.509q7550,05'5°> = 2.8973333

12

10-

50 28 100 125 150




LINEAR REGRESSION

» Bayes: P(m,b,c|{x;}) ~ likelihood(x;, y,| m, b, 6) X prior(m, b, o)
e Likelihood: P(y;, x;|m, b, 6) ~ Normal(y, — m - x; + b, o)

* Prior: P(m, b, 0c) ~ Unitorm(m, b) X Uniform(log(o))

m3’® = 0.5098118 b1 = 2.8973 38 mZl° = 0.501877¢ h3%® = 2.95833]%
o
12 3 12 2]
o
10- 10-
8- 8-
O - O -
4 . 4%
2 5

Bl 95 o100 125 15D E0- 75 4B0 125.1°0




LINEAR REGRESSION WITH OUTLIERS

» Bayes: P(m,b,o0,v | {x;}) ~ likelihood(x, y:|m, b, 6,v) X prior(m, b, o, V) (J. Kruschke)

v — o0 = Normal

» Likelihood: P(y;, x;|m, b, o,v) ~ Student-T(y; — m - x; + b; o, V) v — 0 = Outliery

* Prior: P(m, b, ) ~ Uniform(m, b) X Uniform(log(oc)) X Exponential(v)

m3%® = 0.5018738 b3%® = 2.9745:438,03%° = 23.6243 1472 m3%® = 0.3450312 b3%° = 4.0103815, 057> = 0.0345.093
®

12 12 :
10

8 > 10 i
6 :

8 4
4 -

2 6

B -8 1008 125 1546 50 278 300175 15




def lnlike(data,m,b):
X,y,xerr,yerr=data
model = m * X + b

d=(=xxm+y=b)*%2/ (m*k*2+1)

sigma2=(yerrxx2+mkkx2kxerrxx2)/(1+mxkx2) # projection of error along the line
inv_sigma2 = 1.0/sigma2

return -0.5%(np.sum(d*x*2%inv_sigma2 - np.log(inv_sigma2)))

data=x,y,xerr,yerr

mode1l=MCMCMode12(data, Inlike,
m=Uniform(-15,15),
b=Uniform(-20,20),
)

10 -

LINEAR REGRESSION WITH ERRORS IN BOTH VARIABLES

10

12

14




Bayesian Analysis of Epidemics - Zombies, Influenza, and

other Diseases

Caitlyn Witkowski'*, Brian Blais!»?

1 Science and Technology Department, Bryant University, Smithfield RI 02917
2 Institute for Brain and Neural Systems, Brown University, Providence RI

x Email: cwitkows@bryant.edu
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MATHEMATICS OF TESTIMONY
ANALYSIS OF THE PHILOSOPHER DAVID HUME’S ESSAY ON MIRACLES

M = a miracle happened, m = prior probability of a miracle

Co.Ci, Co .. =claims of a miracle

a = reliability (a=1 unreliable, a=0 reliable)

y = amount reliability changes after each claim is debunked

PM|C.C..Coin . C )=

10

m

m+ ((@+y—1 -1 =pr-1+1)" - (1 —m)

y=0.10

y=0.01

m=0.0,a=0.9

0 20

40 60
Number of Data Points

80 100

https://bblais.github.io/posts/2022/Jun/14/sometimes-more-testimony-is-worse/



https://bblais.github.io/posts/2022/Jun/14/sometimes-more-testimony-is-worse/

CONCLUSIONS

» Messages in this presentation
* Positive message —
» Bayesian methods give you a uniform approach to all problems
» Bayesian methods are easy to interpret
» Bayesian methods give you more information about your problem

» Bayesian methods get you to think more deeply about your data rather than
reaching for a grab-bag of tools

* Negative message —

 Standard tools fail on some simple, well-defined problems

» My teaching and research goal — make technical topics approachable — can | help
you with your projects?




GANDALF VS SAURON

BAYESIAN NOT BAYESIAN




THANK YOU!




