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ABSTRACT

Bayesian methods are a mainstay in the sciences, especially in high energy physics and 
astrophysics but many still see these methods as an arcane, challenging, and overly 
technical. Bayesian analysis is especially perceived as inappropriate for undergraduate 
teaching to the point where there are essentially no undergraduate Bayesian 
textbooks. In this presentation I am going to challenge these notions and provide 
concrete techniques for doing Bayesian inference that I have used with students for 
both within the classroom and for research. I will also provide the rationale for why 
everyone should be using Bayesian techniques, both practically and philosophically.



INTRODUCTION
• I am not a data scientist 

• I am a scientist - computational neuroscience, paleoclimate, epidemiology 
(zombies!), chemical kinetics, anything that interests me 

• Messages in this presentation 

• Positive message —  

• Bayesian methods give you a uniform approach to all problems  

• Bayesian methods are easy to interpret 

• Bayesian methods get you to think more deeply 

• Negative message —  

• Standard tools fail 

• My teaching and research goal — make technical topics approachable



ESPECIALLY IN THE CLASSROOM
THERE IS STILL RESISTANCE TO BAYESIAN METHODS

• Reasons 

• “Subjective” priors vs “Objective” frequencies 

• Math is hard 

• Inertia (we’ve always done things this way…)





BOOK RECOMMENDATIONS



WHAT ARE BAYESIAN METHODS?

• Application of probability theory as an extension of logic 

• “Probability theory is nothing but common sense reduced to calculation.” - Laplace 

• Bayes’ Rule, Bayes Theorem, etc… is just an algebraic step from the multiplication 
rule of probability



RULES OF PROBABILITY
•                      certain that A is false 

•                      certain that A is true 

• Limited Sum Rule 

• Full Sum Rule (“or”) 

• Product Rule (“and”) 

• Bayes Rule

p(A) = 0

p(A) = 1

p(A) + p(A) = 1

p(A+B) = p(A) + p(B)� p(AB)

p(AB) = p(A|B)p(B)

= p(B|A)p(A)

p(A|B)| {z }
posterior

=

likelihoodz }| {
p(B|A)

priorz}|{
p(A)

p(B)| {z }
normalization



E. T. JAYNES, 2003
PLAUSIBILITY AND AXIOMS

• (I)  Degrees of plausibility are represented by real numbers 

• (II) Qualitative correspondence with common sense 

• (a) direction of values is correct 

• (b) consistent with true/false logic (aka Boolean logic) 

• (IIIa) If a conclusion can be reasoned out in more than one way, then every possible way must lead to the same 
result. 

• (IIIb) The robot always takes into account all of the evidence it has relevant to a question.  It does not arbitrarily 
ignore some of the information, basing its conclusions only on what remains.  i.e. the robot is non-ideological 

• (IIIc) The robot always represents equivalent states if knowledge by equivalent plausibility assignments.  That is, 
if in two problems the robot’s state of knowledge is the same (except perhaps for the labeling of the 
propositions), then it must assign the same plausibilities in both

Amazingly, these few axioms are enough 
to specify a completely consistent, 

mathematical framework for 
plausibilities…

Amazingly, these few axioms are enough 
to specify a completely consistent, 

mathematical framework for 
plausibilities… 

…and this mathematical framework is 
exactly the same as the rules developed 

by Laplace for probabilities



FORMS OF BAYES

p(A|B)| {z }
posterior

=

likelihoodz }| {
p(B|A)

priorz}|{
p(A)

p(B)| {z }
normalization

old knowledge

updated knowledge

evidence

alternatives

This isn’t just a method to do quantitative 
analysis, it is a general way to structure 

rational thought.  In other words, to not think 
this way will violate one of Jaynes’ axioms…

and one will, by definition, be irrational.



AKA FREQUENTIST STATISTICS
COMPARISON WITH ORTHODOX STATISTICS

Frequentist aka Orthodox Statistics aka  
Standard Methods

Bayesian aka  
Probability Theory as Logic

P(A) = long-run relative frequency of occurrence of A in a 
sequence of “identical” repetitions

P(A) = real-number value of the plausibility of A with 
incomplete information 

Testing a hypothesis, e.g. true (or population) mean μ=0, 
from a sample, e.g. x1 , x2 , x3 , …, one imagines many 

repetitions of the sample and compares the sample mean 
in these repetitions to the hypothesis.

Testing a hypothesis, e.g. true (or population) mean μ=0, 
from a sample, e.g. x1 , x2 , x3 , …, one looks at the 

probability of that hypothesis given the data,  
P(μ|x1 , x2 , x3 , …)



GALILEAN PROBLEMS

• What Galileo did with his telescope was to take something 
that was invisible and magnify it so that one can easily see the 
truth. He used it to compare different approaches to 
explaining the cosmos. 

• A Galilean problem is one which is small enough that ones 
intuition is enough to determine its truth or falsity.



TRUE VALUE WITH KNOWN NOISE
EASY PROBLEMS

• Data:   

• Question: Is the true (population) value , , less than 13?

{xi} = {12,14,16}, σ = 1

μ



Z-TEST
STANDARD (NON-BAYESIAN) SETUP

• Choose a statistic (i.e. some function of the data) with certain properties you’d like 
(sufficiency, unbiased, etc…) 

• In this case we use the sample mean,  

• The sample mean has a distribution (in the long run, or over a large population) that is 
Normal with mean of the true value, , and standard deviation . 

• In the distribution of the (imagined) population, where does our hypothesis fall? 

• Distribution always over data where the hypothesis (i.e. parameter) is always constant

x̄

μ σ/ N



Z-TEST
STANDARD (NON-BAYESIAN) COMPUTATION

• Data:   

• True value ( ) less than 13?

{xi} = {12,14,16}, σ = 1

μ
x̄ = 14, ̂σ = 1/ 3

z =
14 − 13

1/ 3
= 1.732



A STRATEGIC CHOICE FOR TEACHING

• Use the computer for calculations 

• For Bayesian calculations — use MCMC 

• Otherwise, one can get lost in analysis



Z-TEST WITH PYTHON
STANDARD (NON-BAYESIAN) COMPUTATION

• Data: {xi} = {12,14,16}, σ = 1
x̄ = 14, ̂σ = 1/ 3



NORMAL NOISE, ESTIMATE LOCATION PARAMETER
BAYESIAN SETUP

• Data:   

• Bayes  

• Likelihood:  

•  

• Prior:  

• Distribution over parameter not data

{xi} = {12,14,16}, σ = 1

P(μ |{xi}, σ) ∼ ∏
i

likelihood(xi |μ, σ) × prior(μ)

P(xi |μ, σ) ∼ Normal(xi − μ, σ)

P({xi} |μ, σ) ∼ ∏
i

Normal(xi − μ, σ)

P(μ) ∼ Uniform(μ)



NORMAL NOISE, ESTIMATE LOCATION PARAMETER
BAYESIAN COMPUTATION



TRUE VALUE WITH UNKNOWN NOISE
EASY PROBLEMS

• Basis for the Student-T test 

• Data: {xi} = {12,14,16}



• Basis for the Student-T test 

• Data: {xi} = {12,14,16}

T-TEST
STANDARD (NON-BAYESIAN) COMPUTATION



NORMAL NOISE, ESTIMATE LOCATION AND SCALE PARAMETER
BAYESIAN SETUP

• Data:   

• Bayes:  

• Likelihood:  

•  

• Prior: 

{xi} = {12,14,16}

P(μ, σ |{xi}) ∼ ∏
i

likelihood(xi |μ, σ) × prior(μ, σ)

P(xi |μ, σ) ∼ Normal(xi − μ, σ)

P({xi} |μ, σ) ∼ ∏
i

Normal(xi − μ, σ)

P(μ, σ) ∼ Uniform(μ) × Uniform(log(σ))



NORMAL NOISE, ESTIMATE LOCATION AND SCALE PARAMETER
BAYESIAN COMPUTATION



NORMAL NOISE, ESTIMATE LOCATION AND SCALE PARAMETER
BAYESIAN COMPUTATION



x1 x2 x3

THE LIGHTHOUSE PROBLEM



x1 x2 x3

THE LIGHTHOUSE PROBLEM



TRUE VALUE WITH UNKNOWN CAUCHY DISTRIBUTED NOISE
EASY PROBLEMS

• Data:   

•
Likelihood:  

• Prior:  

• Bayes: 

{xi} = {12,14,16}

P(xi |μ, σ) ∼ Cauchy(xi − μ, γ)

∼
1
πγ ( γ2

(x − μ)2 + γ2 )
P(μ, γ) ∼ Uniform(μ) × Uniform(log(γ))

P(μ, γ |{xi}) =
∏i Cauchy(xi − μ, γ) × P(μ, γ)

P({xi})



CAUCHY NOISE, ESTIMATE LOCATION AND SCALE PARAMETER
BAYESIAN COMPUTATION



THERE IS NO ORTHODOX/FREQUENTIST SOLUTION

• Here we have a trivial problem, only slightly more complex than the easiest problem 
addressed in an introductory Statistics course and none of the tools presented in 
undergraduate Statistics are able to address it.



THERE IS NO ORTHODOX/FREQUENTIST SOLUTION

• Here we have a trivial problem, only slightly more complex than the easiest problem 
addressed in an introductory Statistics course and none of the tools presented in 
undergraduate Statistics are able to address it. (Because the sampling distribution is 
pathological) 

• The Bayesian solution is a straightforward process and can easily be seen as a slight 
generalization from the easiest problem. 

• This isn’t the worst problem with the standard statistical tools!



A WORSE ORTHODOX/FREQUENTIST SOLUTION
• (E T Jaynes) A device will operate without failure for a time, , because of a protective 

chemical inhibitor injected into it; but at time, , the supply of this chemical is 
exhausted, and failures then commence, following the exponential failure law. It is not 
feasible to observe the depletion of this inhibitor directly; one can observe only the 
resulting failures. From data on actual failure times, estimate the time  of guaranteed 
safe operation by a confidence interval. Here we have a continuous sample space, and 
we are to estimate a location parameter, , from the sample values .

θ
θ

θ

θ {xi} = {12,14,16}



TRUE VALUE EXPONENTIAL DISTRIBUTION
EASY PROBLEMS

• Data:   

• Likelihood:   

• Prior:  

• Bayes: 

{xi} = {12,14,16}

P(θ) ∼ Uniform(θ)

P(θ |{xi}) =
∏i p(xi − θ) × P(θ)

P({xi})

p(x ∣ θ)dx = {exp(θ − x)dx, x > θ
0 x < θ}

• There can’t be any data points less than the failure time,  
• The true failure time, , can’t be greater than any of the data points, 

xi < θ
θ xi



• Data:   

• Likelihood: 

{xi} = {12,14,16}
EXPONENTIAL DISTRIBUTION ESTIMATE LOCATION PARAMETER

BAYESIAN COMPUTATION

p(x ∣ θ)dx = {exp(θ − x)dx, x > θ
0 x < θ}



BAYESIAN VS FREQUENTIST

• Data: {xi} = {12,14,16}



BAYESIAN VS FREQUENTIST

• Data: {xi} = {12,14,16}

• Here we have a trivial problem, only slightly more complex than the easiest problem 
addressed in an introductory Statistics course and the standard tools give the wrong 
answer. 

• The Bayesian solution is a straightforward process and can easily be seen as a slight 
generalization from the easiest problem.



PAUSE TO REFLECT

• Shown some simple problems where the standard tools either cannot give a correct 
answer or give wrong answers 

• Also shown that the Bayesian methods are straightforward to write and implement, 
and can handle each of these problems with minimal changes 

• The Bayesian methods also provide more information — you get the individual 
distributions for all parameters along with correlations between parameters with no 
extra work



A LITTLE OF MY FRUSTRATION

• If I was using a method to solve problems and was shown: 

1.The method I was using broke in some simple cases 

2.There is an alternative that is only marginally more complex but…. 

1.…gives reasonable results on all well-posed problems 

2.…gives the exact same results I get on easy problems 

3.…is easier to interpret 

4.…generally gives more information than the methods I had been using

I know what I would do, but what would you do?



ANSCOMBE’S QUARTET

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

https://en.wikipedia.org/wiki/Anscombe%27s_quartet


LINEAR REGRESSION
• Bayes:  

• Likelihood:  

• Prior: 

P(m, b, σ |{xi}) ∼ likelihood(xi, yi |m, b, σ) × prior(m, b, σ)

P(yi, xi |m, b, σ) ∼ Normal(yi − m ⋅ xi + b, σ)

P(m, b, σ) ∼ Uniform(m, b) × Uniform(log(σ))



LINEAR REGRESSION
• Bayes:  

• Likelihood:  

• Prior: 

P(m, b, σ |{xi}) ∼ likelihood(xi, yi |m, b, σ) × prior(m, b, σ)

P(yi, xi |m, b, σ) ∼ Normal(yi − m ⋅ xi + b, σ)

P(m, b, σ) ∼ Uniform(m, b) × Uniform(log(σ))



• Bayes:  

• Likelihood:  

• Prior: 

P(m, b, σ, ν |{xi}) ∼ likelihood(xi, yi |m, b, σ, ν) × prior(m, b, σ, ν)

P(yi, xi |m, b, σ, ν) ∼ Student-T(yi − m ⋅ xi + b; σ, ν)

P(m, b, σ) ∼ Uniform(m, b) × Uniform(log(σ)) × Exponential(ν)

LINEAR REGRESSION WITH OUTLIERS

ν → ∞ ⇒ Normal
ν → 0 ⇒ Outliery

(J. Kruschke)



LINEAR REGRESSION WITH ERRORS IN BOTH VARIABLES



NON-LINEAR FITTING

dS
dt

= − βS ⋅ Z

dE
dt

= + βS ⋅ Z − ζE

dZ
dt

= + ζE − αS ⋅ Z

dR
dt

= + αS ⋅ Z



ANALYSIS OF THE PHILOSOPHER DAVID HUME’S ESSAY ON MIRACLES
MATHEMATICS OF TESTIMONY

• M = a miracle happened, m = prior probability of a miracle 
• C0, C1, C2, … = claims of a miracle 
• a = reliability  (a=1 unreliable, a=0 reliable) 
• 𝛾 = amount reliability changes after each claim is debunked 

P(M |C0, C1, C2, …, Cn) =
m

m + ((a0 + γ − 1) ⋅ (1 − γ)n−1 + 1)n ⋅ (1 − m)

https://bblais.github.io/posts/2022/Jun/14/sometimes-more-testimony-is-worse/ 

https://bblais.github.io/posts/2022/Jun/14/sometimes-more-testimony-is-worse/


CONCLUSIONS
• Messages in this presentation 

• Positive message —  

• Bayesian methods give you a uniform approach to all problems  

• Bayesian methods are easy to interpret 

• Bayesian methods give you more information about your problem 

• Bayesian methods get you to think more deeply about your data rather than 
reaching for a grab-bag of tools 

• Negative message —  

• Standard tools fail on some simple, well-defined problems 

• My teaching and research goal — make technical topics approachable — can I help 
you with your projects?



GANDALF VS SAURON

BAYESIAN NOT BAYESIAN



THANK YOU!


